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SUMMARY

An approach is proposed that uses coordinate measurements of the real sur-
face of spiral bevel gears to determine the actual machine tool settings
applied during the gear manufacturing process. The deviations of the real sur-
face from the theoretical one are also determined. Adjustments are then,O applied by machine tool corrections to minimize these surface deviations.
This is accomplished by representing the real surface analytically in the same
GaLssian coordinates as the theoretical surface.

1. INTRODUCTION

The development of computer-controlled machines has opened new opportuni-
ties for high-precision generation of double-curved surfaces - the surfaces of
gear teeth, rotors, propellers, screws, etc. However, these opportunities can
only be realized if the surface generation is complemented with coordinate
measurements of the manufactured surfaces. Only with such measurements can
the deviations of the real surface from the theoretical one be determined and
then minimized by correcting the applied machine tool settings.

The Gleason Works (USA), Qerlikon (Switzerland), Caterpillar (USA), and
the Ingersoll Milling Machine Company (USA) are pioneers in the development of
computer-controlled machines for generating spiral bevel, hypoid, spur, and
helical gears. Engineers at the Gleason Works have developed a system for
automatically evaluating real gear tooth surfaces that is based on measure-
ments taken with the Zeiss machine (ref. !>. Engineers at Caterpillar have
developed their own machine for coordinate measurement and have used it for
evaluating and correcting real gear tooth surfaces (ref. 2). Coordinate meas-
urement of complicated surfaces is expected to find wide application in
industry.



This paper covers the following topics:

(1) Numerical determination of machine tool settings for a real surface.
Here it is assumed that the deviations of the real surface from the theoretical
one are caused only by machine tool setting errors. The proposed approach
allows the required corrections of machine tool settings to be determined from
coordinate measurements.

(2) Determination of corrections of machine tool settings for a real sur-
face with irregular deviations. Deviations can be caused by heat treatment
and deflections during manufacturing. The proposed approach assumes that the
manufacturing process provides repeatable surface deviations and allows the
deviations to be minimized by appropriate corrections to the machine tool
settings.

(3) Analytical representation of the real surface including the deviations
that remain after correction by (2). The proposed approach allows the real
surface to be represented in the same Gaussian coordinates as the theoretical
surface so that computer-aided simulation of meshing and contact of the inter-
acting surfaces (e.g., gear tooth surfaces) can be simplified.

The solution to these problems is illustrated by a numerical example.

2. REPRESENTATION OF A THEORETICAL SURFACE

A theoretical gear tooth surface is an envelope of the family of tool sur-
faces. Methods for their analytical representation are well known and have
been described in reference 3.

The theoretical surface Et may be represented in a parametric form in a
coordinate system St rigidly connected to Et as follows:

2 ar art

rt(u,,e;qj) E C (j = 1,2, .,n); u,e E E; - x -X • 0 (1)

The designation C2 means that the vector function has continuous derivatives
for all arguments at least to the first and second orders. The Gaussian coor-
dinates are designated by u and e, and E is the area of u and e. The
inequality in equation (1) indicates that Et is a regular surface. The
machine tool settings are designated by constants qj(j = 1,2, . . .,n).

This approach requires a parametric representation of a s!-rface that is
equidistant from the theoretical surface. Such a surface is represented by

r t(u,e) + Xnt(u,e) (X 0 0) (2)

Here

Nt 3rt 3rt

ntu :•; t- ux = au
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whe;e Nt is the vector of the surface normal; nt is the unit surface nor-
mal; and X is the scalar that determines the distance between the two
surfaces.

3. PRINCIPLES OF COORDINATE MEASUREMENT

A coordinate measurement machine is supplied with a probe that can per-
form translational motions in three mutually perpendicular directions during
the measurement process. The probe tip represents a changeable sphere whose
diameter can be chosen from a wide range. Henceforth, we will consider that a
coordinate system Sm(Xm,Ym,Zm) is rigidly connected to the coordinate measure-
ment machine, where Zm corresponds to the axis of the gear (fig. 1). The
axis of the probe may be installed parallel to Zm (fig. ](a)) or perpendicular
to Zm (fig. l(b)) as is appropriate - depending on the pitch cone angle of a
hypoid or spiral bevel gear, for example. The back face of the gear is its
base plane, and the origin of the coordinate system Sm is located in the base
plane or is related to it. A coordinate system St(xt,yt,zt) is rigidly con-
nected to the gear being measured. In some cases we may assume that the origin
Ot coincides with 0 m. In the most general case the orientation and location
of St with respect to Sm are determined with two parameters, 8 and 2
(fig. 2). These parameters can be determined by using the computational proce-
dure described in section 4.

The coordinate measurement machine is provided with a rotary table. The
table allows the gear to be installed in an initial position with respect to
the probe. The measurement data provide the coordinates of the center of the
probe tip sphere.

The coordinate measurement machine can be calibrated for a chosen probe
tip sphere by using a calibration ring (fig. 3). The initial coordinates of
the center of the tip sphere are

[x (0) () Z(')] =[R + a, 0, f] (3)m m m

where R is the radius of the calibration ring, a is the radius of the
sphere, and f is obtained by independent measurement. At the initial posi-
tion the probe sphere is in contact with the calibration ring. The Ym = 0 oI--
alignment is achieved by finding the 'Im position where equal displacements
±&Y of the probe result in equal Xm direction displacements. Since the
probe performs measurements by translational motion, its displacements in the \'
Xm, Ym, and Zm axis directions represent displacements of the sphere center
from the initial position.

4. DEIERMINATION OF REAL MACHINE TOOL SETTINGS ,1

Initial Considerations L]

Ail deviations of the real surface from the theoretical one are assumed
to be only the result of errors in the applied machine tool settings. Then
the real machine tool settings are determined from the coordinate measurement
data.

,3.. ................



Consider that the theoretical gear tooth surface and the unit surface nor-
mal are represented in coordinate system St by the following vector
equations:

rt= rt u; q O) "qn(0) (4)

n= nt[u,e; q(O) q (01 (5)

where q (0) q (0) represent the nominal machine tool settings. To rep-1 ' "' n

resent the real surface and its unit normal in St, substitute the real
machine tool settings to be determined (ql,q 2 , .,qn) for the nominal val-
ues in equations (4) and (5).

Now consider an imaginary surface from the real surface at a distance
equal to the radius of the probe sphere. This surface is represented in St
by (see eq. (2))

(e)xt = x t(u,e; qj) + anx(ue; qj) = A(u,e; qj)

(e)
Yt = Yt(u'(; qj) + any(u,e; qj) = B(u,e; qj) (6)

(e)( = zt(u,e; qj) + anz(u ,e; qj) = C(u,E; qj)

where a is the radius of the probe sphere; A, B, and C represent the result-
ing functions; and qj(j = 1, .,n) are the unknown r~al machine tool
settings.

Basic Equations

The real machine tool settings are determined as follows:

Step 1. - The coordinate transformation from St to Sm is bised on
the matrix equation

[rm] = [Mmt] [rt] (7)

Here (see fig. 2)

I cos & sin 6 0 0]

[M rn t si& cos & 0 -~(8)

Considering that the measured coordinates of the probe sphere center (Xm,Ym,Zm)
coincide with coordinates on the equidlstant surface represented in Sm,
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[x~e)Y(e)z(e)1m = [XYmZ T (9)

Equations (6) to (9) yield

Xm = A(u,e; qj)cos 6 + B(u,e; qj)sin 6

Ym = -A(u,E; qj)sin 6 + B(u,e; q.)cos S (10)

Zm = C(u,e; qj) + 2

Step 2. - The goal is to derive equations that are invariant with respect
to the parameters 6 and 2. The drawing of figure 2 yields

2 <2 ~2 2 2 2 2
2 X m + y x2 2+- = A (u,e; qj) + B (u,e; qj) (11)

Using equation (11) yields

X + A2 (uO" q + B (u,e; qj) (12)
m m '

Equations (10) yield

tan 6 A(A - Xm + B(B - Ym(13)2- BX - AY
m m

It is also evident that

2= Zm - C(u,e; q.) (14)

Step 3. - Henceforth, the subscript m, indicating that the coordinates
of a point are represented in coordinate system Sm, is dropped. The number
of measurement points is designated by d and the index of a measured point
by the subscript p. The following system of equations, based on equations
(12) to (14), is used for determining the real machine tool settings:

2 2 2 2X + = A (u P,e p qj) + B (u ,ep ; qj) (p = 1,2, . ,d) (15)P P pp 3p '

A p(A - X ) + B p(B - Yp) Ap+l (Ap+l - X p+l) + B +I(Bp+ - Y p+ 16)

Bp Xp -p Yp Bp+l Xp+1 p+l Yp+1

(1 p d - 1)

Zp+1 - Zp = C(U p+1 p+l; qj) - C(u pp; qj) (1 < p d - 1) (17)
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From the results of measurements for d points on the surface, (3d - 2)
equations can be obtained for equations (15) to (17) in 2d unknown surface
coordinates (upep) and n unknown machine tool settings qj(j = 1, .,.

Thus, determining n unknown machine tool settings requires

d = n + 2; k = 3d - 2 = 3n + 4 (18)

where d is the number of surface measurements and k is the number of non-
linear equations that have to be solved. The parameters 6 and Q, orienting
and locating coordinate system St with respect to Sm (fig. 2), can be deter-
mined from equations (13) and (14).

If Q = 0 (the origin 0 t coincides with Om), the following equation may

be used in place of equation (17):

Zp = C(up,ep; qj) (19)

For this case the coordinate measurements of d points on the real surface
result in (3d - 1) equations (15), (16), and (19) in 2d unknown surface coordi-
nates (up, e ) and n unknown machine tool settings qj(j = 1, 2, .,n).
To determine the n unknown machine tool settings, use

d = n + 1; k = 3d - I = 3n + 2 (20)

Computational Procedure

The numerical solution of a large system of nonlinear equations is a
complicated problem. For the case where 2 * 0 and n = 4 the number of equa-
tions to be solved according to equation (18) is k = 16. The system of non-
linear equations can be solved by usin'g computer software such as the IMSL
subroutine DNEQNF. However, the successful application of this program
requires a good first guess - an initial set of unknowns that is used for the
first iteration. We propose a solution procedure that begins with a system of
four equations using only the measurements for two points on the surface. This
number of equations, k = 4, and the number of measurements, d = 2, can be
obtained from equation (18) considering that n = 0. This means that, for the
first step, errors in the machine tool settings are neglected and the machine
tool variables ql, q2 , . .,qn in equations (15) to (17) are set to the

(0) (0) (0)
nominal values q1  ,q 2  , ,qn

Step 1. - An initial guess for the system of four equations is obtained
as follows: (1) an approximate value for 2 is determined by measurements and
then (2) neglecting the errors for machine tool settings, approximate values
for the surface coordinates of two measured points are determined by using the
following equations:

C(u p,e ) = Z - 1 (p = 1,2) (21)

A2(Up,e ) + B (U ,e ) = X2 + Y (p = 1,2) (22)
p p pp p p

6



Step 2. - Once the appropriate values of (u,e) for the two measured
points are known, more precise solutions for the surface coordinates can be
obtained by using the system of four equations

A2((u ,E) + B 2(Ule) X + Y (23)

A2(u 2,+ 2 ) + u 2') 2 2 + Y2 (24)

C(u 2,e 2 ) - C(u 1 ,81 ) = Z2 - Z 1 (25)

1 1A 1 1l 1 I( l - _] A2 (A2 - X2 ) + B2(B2 2

( 1 1 2 + B 2 2 2 (26)
B X A -IAY I BX2 - A2Y2

obtained for equations (15) to (17) by considering that d = 2 and neglecting
errors in the machine tool settings,

Step 3. - The solution obtained for the previous step is then used as the
initial guess for a larger system of k = 7 equations (15) to (17), obtained
by considering that one machine tool setting is a variable and using d = 3
measurement points.

Step 4. - The number of machine tool settings that are considered as var-
iables is gradually increased until the exact values for the whole set of
j = 1,2, ... .,n unknown machine tool settings are eventually determined by
using a system of k = 3n + 4 equations (15) to (17). Knowing the real values
of the machine tool settings allows the settings to be corrected and the devia-
tions of the real surface from the theoretical one to be eliminated.

In some cases the real tooth surface is substantially distorted because
of problems other than errors in the machine tool settings. The procedure
described in section 5 can be used to improve the precision of the generated
surface.

5. MINIMIZATION OF DEVIATIONS OF THE REAL SURFACE

Now consider the case where the deviations of the real surface from the
theoretical one are caused by many factors - not just errors in machine tool
settings. It is assumed that the process of manufacturing, including heat
treatment, provides repeatable deviations. The surface deviations may then be
compensated for (but not made zero) by using directed corrections to the
initially applied machine tool settings. The procedure for determining the
corrected machine tool settings is based on minimizing an objective function
in n variables that describes the real surface deviations; n is the number
of machine tool settings to be corrected.

The following stages of solution to this problem are considered: (1)
determination of the orientation of the coordinate system St with respect to
Sm (fig. 2); (2) determination of the deviations of the real surface; and (3)
derivation and minimization of an objective function (described later in this
paper).
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Determination of Orientation Parameter 6

The gear is assumed to be installed on the coordinate measurement machine
flush against a base plate such that the parameter 2 is known (for conven-
ience, take Q = 0). Furthermore, it is assumed that the probe can be ini-
tially installed at a specified position and that the gear can be rotated until
it contacts the probe at this position. The specified position of the probe is
determined from the equations for tangency of the probe with the theoretical
surface at a selected surface reference point M. This point can be chosen as
the middle point of the surface and is given by surface coordinates (u*,e*)
that determine M and the unit surface normal at M.

The equations for tangency of the probe sphere and the theoretical surface
at M are derived by using equations (6) to (8) and considering that the
parameter 2 in matrix (8) is zero. Equations (6) to (8) represent a system
of three equations in four unknowns: Xm, Ym, Zm, and S. If Ym = 0, then
Xm, Zm, and 6 can be determined from the following set of equations derived
from equations (12) to (14):

X2 A2 [u*,e)*; q(0)] + B2[u*,E*; q(O)]

Zm = C[u*,e*; q(0)J (27)

t A2 [u*,e*; q (01 - XmA[u*,O*; (O)l
tan 

)(0

Here (u*, E)*) are the surface coordinates of the chosen reference point M;

are the coordinates of the center of the probe sphere that is to be installed
on the coordinate measurement machine. If, in the installation of the probe,
the actual coordinates (Xm,O,Zm) differ from the calculated ones, the values
of u*, e*, and 8 must be corrected by using equation (27).

Determination of Deviations

Once the orientation parameter & is known, the theoretical surface can
be represented in coordinate system Sm. Consider that Rp(X ,Yp,Zp) is the
position vector of the center C of the probe sphere and that this point lies
on the line of action of the theoretical surface normal at a point T of the
theoretical surface Zt (fig. 4). The vector equation is

R = rp[Up,Op; q.O)] + Xpnp[,ep; q(0)] (28)
P i PPPP

Here (up,ep) are the curvilinear coordinates of point T of Zt; qj

(j = 1,2, .,n) are the theoretical machine tool settings; and Xp is the
distance between T and C.

8



Equation (28) yields a-system of three equations in the unknowns

(Up,EpXp) that can be represented as

x qO(0)] q Yp - yp[up,ep; qj (01Xp p[Up, =p, p

nE ; (O)] n [upp; (0)]

Zp - Zp[Up,E~p; q(O)1

- p L='x (u ,ep) (29)

n ~u ,e); qj (01 p Ppnzp UP, p q•)

where p = (1,2 .,d); j = (1,2 .,n); and all coordinates are repre-

sented in coordinate system Sm.

The procedure of computation is as follows:

Step 1. - The surface coordinates for a measurement point can be deter-
mined from the equations

f 1(upep) = [nyp(Xp- p)- nxp(Yp- yp)] 0 (30)

f 2 (uplep) =[nzp(Yp yp- nyp(Zp- zp)] =0 (31)

Step 2. - The value of Xp can be determined by using any of the three
equations of system (29).

Step 3. - The deviation A of the real surface from the theoretical sur-
face can be determined by considering that the point of tangency of the probe
sphere with the real surface lies at a distance a equal to the radius of the
probe sphere (fig. 4). Thus, the position vector Mp of the point ci the
real surface Er is given by

M = rp[up,ep; qj ] + p (32)

where

p =Xp - a (33)

Image Surface

The process of manufacturing initially provides the theoretical surface
Zt, but owing to unknown factors the surface Et becomes distorted into the
real surface Er represented numerically by equation (32). If the deviations
are repeatable, the inevitable distortion can be prepared for and the devia-
tions in the final manufactured surface minimized by generating, not the theo-
retical surface Et, but an image surface Er represented by

9



Np(up ep) = rp[Uep qj - 8 q(0] (34)
SP' P, p LP 'J i' q

Comparing equations (32) and (34) shows that Er is the image of Er

reflected through the theoretical surface Et (see fig. 4). Henceforth,

Er will be referred to as the imaqe surface.

Although Er is the surface to be generated, it cannot he provided

exactly with the existing generation process. The surface Er can only
be approximated with a corrected surface Et represented by the vector

function

r*(up,E ; qj) (35)
p p'p

Here the designation qj instead of q() means that new machine tool

settings must be applied for generating Zt. The deviation of Zr from
Zt can be determined by using equations that are similar to equation (29):

X* - x (u* E*; q.) =Y* - yp (u*pE* qj)
pp p' p j p p p
n (u*,8q* ;q" n (u E* e; qj)

xp p p j)yp p p,

z* - zp (u* e* qj)
p p, p, (

= (n (u* ; e* q) )36q
zp(p',p, j p p' p'j

The designation (upEp) instead of (up,ep) means that the surface coordinates

associated with each measurement p will be changed, since new machine tool
settings are applied.

Determination of Corrected Machine Tool Settings

The goal is to determine new machine tool settings such that the

differences a (p = 1,2, .,d) between the surfaces Zr and Zt are mini-
mized. ihe solution to this problem is based on the minimization of the objec-
tive function

d

F = -' ap( *) 2  (37)
p=l

where' F is a function of n variables, the machine tool settings
qj(j = 1,2, ... ,n); and ap are the weighting coefficients. The use of
weighting coefficients allows smaller deviations to be provided at points where
higher precision is required.

10



Numerical Example

The results of measuring a Formate hypoid gear are represented in
figures 5 and 6. The number of measured points is d = 45. Figure 5 illus-
trates the deviations Ap(p = 1,2, .... 45) of the real surface from the
theoretical one. The locations of measured points are represented on a plane,
and the deviations ýp are shown as normal displacements from the plane. Fig-
ure 6 represents the same data on a plot. Each latitudinal cross section of
figure 5 is represented by a line segment in figure 6. Figure 7 shows the

deviations of the imaginary surface Er to which the corrected theoretical
surface Et is to be fitted.

The deviations ýp between the surfaces Et and Er were minimized num-

erically through use of equation (33) and the quasi-Newton method (reT. 4) as
implemented in the IMSL subroutine UMNIF. The weighting coefficient ap = 1

was used. Figure 8 shows the deviations from the theoretical of both the

image Lr and the fitted image surface Zt. Figure 9 is a three-dimensional
representation of the deviation of the fitted image surface Zt from the

theoretical one.

6. ANALYTICAL REPRESENTATION OF THE REAL SURFACE

As was mentioned previously, two cases of deviation from the real surface
may be considered: (1) when the deviations are caused only by using the wrong
machine tDol settings, and (2) when the deviations a:e caused by many unknown
factors. In the first case the real surface can be repretented by the same
equations as the theoretical one just by substituting the theoretical settings
for the real ones (section 4). In the second case the deviations can be mini-
mized by correcting the applied machine tool settings, and the problem is to
represent analytically the new real surface obtained by manufacturing a new
gear witn the corrected machine tool settings. The goal is to represent this
surface as the sum of two vector functions

[r (0)]

r = rt[u,9; qj + r(u,e) (38)

- (0)1
Here the /ector function rt u,e; q. J is the same as that for the theoretical

;urface; and .1r(u,0) is an analytical vector function of the deviations of

the new surface from the theoretical one. Even though the new gear was not
(0)

manufactured by using the nominal settings qj , its representation is bared

on rt[u,e; q(O)] because the corrected machine tool settings were desgned to

bring the final manufactured surface closer to rt[u,e; q(O)].

If new measurements and the procedure of section 5 are used, the new sur-
face can be represented numerically by equation (32). Since the numerical

11



deviations AO can be represented analytically as A(u,e), the new surface

can be represented by

r(u,O) = rt u,e; q0)] + A(u,e)ntju,e; q(O)] (39)

However, the equations for the surface normal of the surface represented
earlier derived from

r 8r ar
nr - Nr' Nr u ae (40)

become too complicated for practical use in tooth contact analysis. 'or this
reason it is simpler to consider the deviations of the real surface as meas-
ured along a vector of constant direction - for instance, along the unit sur-
lace normal no to the theoretical surface at the reference point. Such
ieviations can be determined by using the following equations, similar to equa-
:ions (29) and (33):

X (0)) q _ y- Y,(up,ef; q(0))
no no

y

Z- zp(up,ep; q(0))

z

A° = X° - a (42)
P p

Here n°(nx, nv, nz) is the unit normal to the theoretical surface at the ref-
erence point; Xp,YpZp) are the current coordinates of the center of the

probe sphere; a is the radius of the probe sphere; and Ap is the surface
deviation in the direction of no.

Given that the numerical deviations Ap (up,ep) p = 1,2, .,d have

oeen determined, the problem of fitting a function A°(u,e) to the numerical
data can be approached in a number of ways. A common approach to such a prob-
lem is to fit piecewise polynomial functions to the data, such that the result-
ing function goes through all of the data and is smooth at the boundary between
pieces (reff. 5). This approach is not applicable to the given problem for two
reasons. First, the large number of segments of polynomial functions further
complicates the analytic representation, making tooth contact analysis and sim-
ulation of meshing more difficult. Second, it is unreasonable to assume that
the data are so precise that the desired analytical representation must match
the data at every point.

A good solution 'o this problem is one that satisfies the two conflicting
goals. The solution must result in a simple expression for A"(u,e) and must
represent the numerical data with good accuracy. We thus propose to determine
A°(u,O) by using linear multiple regression analysis (ref. 6). In particular,

12



if a solution of the following form is assumed:

A°(u,e) = b0 + b1fI(u,e) + b2 f 2 (u,E) + + bk f k(uE) (43)

where bO, bl, . . .,bk are undetermined coefficients and fl(u,e),
fi2(u,e), ... ,fk(u,e) are any set of linearly independent functions of u
and e not involving unknown parameters. Then linear multiple regression can
be used to determine the coefficients bO, bl,. .. ,bk that provide a least-
squares fit of equation (43) to the numerical data. Computer programs for lin-
ear multiple regression analysis exist in various software packages such as
the IMSL statistics library and the SPSS statistics program. This software
can solve equation (43) for the unknown coefficients, provide statistics on
the expected error of the approximation, and automatically test various combi-
nations of user-supplied functions to allow the user to select the best subset
of functions. Although the technique allows for general functions f1 (u,e),
f 2 (u,9), ... fk(u,e), real data suggest that the deviations can be suffici-
ently represented by a second-order polynomial:

A°(u,e) = b0 + bIu + b29 + b 3u2 + b4E2 + b5u0 (44)

7. CONCLUSIONS

In this paper an overview has been presented describing the interrelation-
ships between gear geometry, manufacture, and measurement. A methodology also
has been presented to improve convergence between theoretical and manufactured
surfaces by adjusting the machine tool settings during manufacture. This proc-
ess can be carried out at several stages of gear manufacture (e.g., cutting
and grinding) if so desired. The methodology can even be used to decrease the
distortion effect of other manufacturing processes such as heat treatment.

The following specific results were obtained:

1. A process was devised for determining the real machine tool settings
based on coordinate measurement of the manufactured gear.

2. A procedure for minimizing deviations of the real surface by correct-
ing the machine settings was developed.

3. An approach for analytically representing the real gear surface was
developed.
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